Query-to-Communication Lifting for P^NP

نویسندگان

  • Mika Göös
  • Pritish Kamath
  • Toniann Pitassi
  • Thomas Watson
چکیده

We prove that the PNP-type query complexity (alternatively, decision list width) of any boolean function f is quadratically related to the PNP-type communication complexity of a lifted version of f . As an application, we show that a certain “product” lower bound method of Impagliazzo and Williams (CCC 2010) fails to capture PNP communication complexity up to polynomial factors, which answers a question of Papakonstantinou, Scheder, and Song (CCC 2014). 1998 ACM Subject Classification F.1.3 Complexity Measures and Classes

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A ZPP Lifting Theorem

The complexity class ZPP (corresponding to zero-error randomized algorithms with access to one NP oracle query) is known to have a number of curious properties. We further explore this class in the settings of time complexity, query complexity, and communication complexity. r For starters, we provide a new characterization: ZPP equals the restriction of BPP where the algorithm is only allowed t...

متن کامل

Query-to-Communication Lifting for P

We prove that the P-type query complexity (alternatively, decision list width) of any boolean function f is quadratically related to the P-type communication complexity of a lifted version of f . As an application, we show that a certain “product” lower bound method of Impagliazzo and Williams (CCC 2010) fails to capture P communication complexity up to polynomial factors, which answers a quest...

متن کامل

Lifting randomized query complexity to randomized communication complexity

We show that for any (partial) query function f : {0, 1} → {0, 1}, the randomized communication complexity of f composed with Indexm (with m = poly(n)) is at least the randomized query complexity of f times log n. Here Indexm : [m] × {0, 1} → {0, 1} is defined as Indexm(x, y) = yx (the xth bit of y). Our proof follows on the lines of Raz and Mckenzie [RM99] (and its generalization due to [GPW15...

متن کامل

Randomized Query Complexity of Sabotaged and Composed Functions

We study the composition question for bounded-error randomized query complexity: Is R(f ◦ g) = Ω(R(f)R(g)) for all Boolean functions f and g? We show that inserting a simple Boolean function h, whose query complexity is only Θ(logR(g)), in between f and g allows us to prove R(f ◦ h ◦ g) = Ω(R(f)R(h)R(g)). We prove this using a new lower bound measure for randomized query complexity we call rand...

متن کامل

Nearly Optimal Separations Between Communication (or Query) Complexity and Partitions

We show a nearly quadratic separation between deterministic communication complexity and the logarithm of the partition number, which is essentially optimal. This improves upon a recent power 1.5 separation of Göös, Pitassi, and Watson (FOCS 2015). In query complexity, we establish a nearly quadratic separation between deterministic (and even randomized) query complexity and subcube partition c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Electronic Colloquium on Computational Complexity (ECCC)

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2017